Lactoferrin promotes murine C2C12 myoblast proliferation and differentiation and myotube hypertrophy
نویسندگان
چکیده
Lactoferrin (Lf) is a multifunctional glycoprotein, which promotes the proliferation of murine C2C12 myoblasts. In the present study, it was investigated how Lf promotes myoblast proliferation and whether Lf promotes myoblast differentiation or induces myotube hypertrophy. Lf promoted the proliferation of myoblasts in a dose‑dependent manner. Myoblast proliferation increased on day 3 when myoblasts were cultured in the presence of Lf for three days and also when myoblasts were cultured in the presence of Lf for the first day and in the absence of Lf for the subsequent two days. In addition, Lf induced the phosphorylation of extracellular signal‑regulated kinase (ERK)1/2 in myoblasts. The mitogen‑activated protein kinase kinase 1/2 inhibitor U0126 inhibited Lf‑induced ERK1/2 phosphorylation and repressed Lf‑promoted myoblast proliferation. C2C12 myoblasts, myotubes and skeletal muscle expressed low‑density lipoprotein receptor‑related protein (LRP)1 mRNA and Lf‑promoted myoblast proliferation was attenuated by an LRP1 antagonist or LRP1 gene silencing. The knockdown of LRP1 repressed Lf‑induced phosphorylation of ERK1/2. Furthermore, when myoblasts were induced to differentiate, Lf increased the expression of the myotube‑specific structural protein, myosin heavy chain (MyHC) and promoted myotube formation. Knockdown of LRP1 repressed Lf‑induced MyHC expression. Lf also increased myotube size following differentiation. These results indicate that Lf promotes myoblast proliferation and differentiation, at least partially through LRP1 and also stimulates myotube hypertrophy.
منابع مشابه
Dexamethasone Treatment at the Myoblast Stage Enhanced C2C12 Myocyte Differentiation
Background: Glucocorticoids induce skeletal muscle atrophy in many clinical situations; however, their hypertrophic and pro-differentiation effects on myotubes have rarely been reported. We hypothesized that dexamethasone (DEX) has a dual effect on muscle differentiation, and aimed to develop a new differentiation protocol for C2C12 cell line. Methods: Dose- and time-dependent effect of DEX on ...
متن کاملEffects of 1,25(OH)2D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy
An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murin...
متن کاملStac3 Inhibits Myoblast Differentiation into Myotubes
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither ...
متن کاملBlack ginseng activates Akt signaling, thereby enhancing myoblast differentiation and myotube growth
Background Black ginseng (BG) has greatly enhanced pharmacological activities relative to white or red ginseng. However, the effect and molecular mechanism of BG on muscle growth has not yet been examined. In this study, we investigated whether BG could regulate myoblast differentiation and myotube hypertrophy. Methods BG-treated C2C12 myoblasts were differentiated, followed by immunoblotting...
متن کاملIdentification of Map4k4 as a novel suppressor of skeletal muscle differentiation.
Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-me...
متن کامل